
Checklist-Prompted Feature Extraction
for Interpretable and Robust Claim Check Worthiness Prediction

Yuka Teramoto1, Takahiro Komamizu2, Mitsunori Matsushita3, Kenji Hatano1

1Doshisha University, 1–3 Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
2Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8603, Japan

3Kansai University, 2–1–1 Ryozenji, Takatsuki, Osaka 569-1095, Japan
{teramoto, hatano}@mil.doshisha.ac.jp, taka-coma@acm.org, m mat@kansai-u.ac.jp

Abstract

This study explores the use of Large Language Models
(LLMs) for Claim Check Worthiness Prediction (CCWP), a
critical first step in fact-checking. Building on prior research,
we propose a method that utilizes structured checklists to
break down CCWP into interpretable and manageable sub-
tasks. In our approach, an LLM answers 52 human-crafted
questions for each claim, and the resulting responses are used
as features for traditional supervised learning models. Exper-
iments across six datasets show that our method consistently
improves performance across key evaluation metrics, includ-
ing accuracy, F1 score, surpassing few-shot prompting base-
lines on most datasets. Moreover, our method enhances the
stability of LLM outputs, reducing sensitivity to prompt de-
sign. These findings suggest that LLM-based feature extrac-
tion guided by structured checklists offers a promising direc-
tion for more reliable and efficient claim prioritization in fact-
checking systems.You can access and utilize the program and
code at the following GitHub repository: 1

Introduction
Fact-checking is an effective countermeasure against the
spread of misinformation when conducted rapidly and with
sufficient investment in careful verification. Misinformation
poses a growing threat in today’s information society: it can
disrupt democratic processes by damaging the reputations of
election candidates, harm public health through false claims
about diseases like COVID-19, and foster social isolation
by promoting conspiracy theories (Das et al. 2023; Schmitt
et al. 2024).

It is necessary to automate fact-checking the ever-
increasing volume of misinformation efficiently. Rapid com-
pletion of fact-checking can more effectively curb the spread
of harmful misinformation (Rastogi and Bansal 2023). How-
ever, the potentially misleading claims often exceed the pro-
cessing capacity of fact-checkers. Fact-checking is a com-
plex and time-consuming process that may take days or
even weeks, placing a significant burden on individuals.
These facts highlight the importance of computational tools
in fact-checking mechanisms, as discussed in previous re-
search (Guo, Schlichtkrull, and Vlachos 2022).
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We explore using LLM, recently gaining significant atten-
tion, to support parts of the fact-checking workflow. LLMs
have demonstrated strong performance across various tasks,
prompting a paradigm shift. However, many studies caution
against relying on LLM for fact-checking, as they are prone
to biases and hallucinations2, and may amplify inaccurate
information (Neumann et al. 2024). Instead, prior work sug-
gests that human–LLM collaboration is a more practical
approach to fact-checking (Das et al. 2023; Schmitt et al.
2024), with humans intervening in critical stages to mitigate
risks.

In this context, one promising use case for LLM is the
automation of claim prioritization for verification (Majer
and Šnajder 2024). This task, known as Claim Check-
Worthiness Prediction (CCWP), is a crucial first step in
the fact-checking workflow. In today’s information society,
web users generate an overwhelming number of posts, and
each claim differs in its potential social impact. Therefore,
fact-checkers must screen these claims to determine whether
they should enter the workflow.

In this study, we investigate the role of LLM in a
human-in-the-loop fact-checking framework by introduc-
ing the structured checklist designed explicitly for CCWP.
A key barrier to automating CCWP lies in the ambigu-
ity of value judgment criteria, a challenge noted in previ-
ous studies (Nenno 2024; Neumann and Wolczynski 2023;
Gencheva et al. 2017a). Identifying fine-grained factors in-
fluencing check-worthiness and structuring the assessment
process is essential for fair and effective claim prioritization
and automation.

The structured checklist we adopt (Sehat et al. 2024),
developed through interviews with 23 professional fact-
checkers, assesses the potential harms of misinformation
across five dimensions: Fragmentation, Actionability, Be-
lievability, Likelihood of spread, and Exploitativeness. We
investigate whether LLM can leverage this checklist to help
identify which claims fact-checkers should prioritize for ur-
gent verification. This checklist-based approach offers sev-
eral advantages: First, it decomposes the complex CCWP
task into smaller, more interpretable, and independent sub-

2“Can ChatGPT fact-check? PolitiFact tested.” https://www.
politifact.com/article/2023/may/30/can-chatgpt- fact-check-
politifact-tested/, Accessed: March 29, 2025.



Table 1: Examples of questions from the structured checklist which used to determine check-worthiness

Question Category Example
External information Is there a lack of high-quality information that is publicly accessible and

refuting the message’s claim?

Impressions from the text Does the message directly call audience members to share the content fur-
ther?

tasks. Second, it reduces task complexity and facilitates hu-
man oversight. Third, it yields more robust performance than
directly prompting LLM for CCWP.

The contributions of this study are as follows:

• We propose a novel approach for CCWP that decom-
poses the task into a set of fine-grained sub-decisions
based on the structured checklist.

• We demonstrate that using LLM-generated responses to
these sub-decisions as features for supervised classifiers
improves predictive performance over few-shot prompt-
ing baselines.

• Our method provides more excellent stability than LLM
prompting, mitigating variability due to prompt design
and model differences.

• We conduct extensive experiments across six publicly
available datasets and provide a unified model perfor-
mance evaluation using both classification and ranking
metrics.

Related Work
Many previous studies have addressed the task of
CCWP (Hassan, Li, and Tremayne 2015; Patwari, Gold-
wasser, and Bagchi 2017; Gencheva et al. 2017b;
Gangi Reddy et al. 2022; Majer and Šnajder 2024). The
CLEF 2024 CheckThat! Lab provides both datasets and
a competitive platform for check-worthiness tasks(Barrón-
Cedeño et al. 2024). More recently, researchers have ex-
panded their focus to using LLMs in subtasks of fact-
checking workflow, including CCWP (Quelle and Bovet
2024).

As mentioned in the Introduction Section, LLMs should
not be used to perform CCWP directly because LLMs con-
tain biases and can amplify these biases (Neumann et al.
2024). Moreover, LLMs can produce hallucinations that de-
viate from facts, and the mechanisms of these hallucinations
are not entirely understood (Ji et al. 2023). In an evaluation
using LLMs to perform the task directly, an F1 score of 0.75
was achieved on the ClaimBuster dataset, and relatively high
evaluation metrics were reported even with simple zero-shot
and few-shot prompts (Majer and Šnajder 2024). In this
study, we use these results as a baseline.

The CCWP task is crucial for improving the efficiency of
fact-checking; however, ambiguity in the criteria for check-
worthiness remains a significant bottleneck in automating
fact-checking value assessments (Nenno 2024). This am-
biguity poses a challenge for the automation of CCWP in

computer science and fairness-related research in the so-
cial sciences. Indeed, factors such as the race, beliefs, ex-
pertise, and minority status of fact-checkers often affect
these judgments, raising concerns about equity and bias
in fact-checking systems (Neumann and Wolczynski 2023;
Gencheva et al. 2017a).

Some Researchers in the social sciences domain aim to
explain variations in fact-checkers’ judgments and to reduce
ambiguity to objectively analyze the validity of their deci-
sions. One promising direction in this line of work is to
divide the fact-checking process into multiple, more fine-
grained decision-making tasks, especially those involving
value-laden assessments. Sehat et al. created the structured
checklistto determine the priority of fact-checking (Sehat
et al. 2024). This checklist was developed based on a fact-
checking survey of human experts. Examples of the ques-
tions are shown in Table 1. Fact-checkers respond to each
item with “yes,” “no,” or “unknown.” The higher the num-
ber of “yes” responses, the more urgent it is to fact-check
the corresponding claim. The core idea of this research is to
apply the structured checklistas a prompt for LLM.

Proposed Method
Figure 1 shows how the features were generated in our ex-
periment. We use the structured checklist (Sehat et al. 2024)
outlining human fact-checkers’ steps to prioritize claims.

In this paper, the task of Claim Check-Worthiness Predic-
tion for fact-checking is modeled as a binary classification
problem that a predictor indicates the check-worthiness of
the claim. The goal is to identify whether a given claim is
worth being fact-checked. Formally, let C denote a claim,
and the objective is to learn a function: f : C → {0, 1} such
that:

f(C) =

{
1 if C is check-worthy
0 otherwise

(1)

As the previous research indicates a promising result (Ter-
amoto et al. 2024), this paper assumes that LLMs will likely
perform comparably to humans on some of these questions
in the structured checklist (Teramoto et al. 2024). Indeed,
even in behavioral economics, it is known that LLMs can
mimic human impressions and value judgments (Leng 2024;
Wang et al. 2023). Our preliminary research also showed
similar results.

We observed the structured checklist and hypothesized
that two types of these questions exist: those that ask for ex-
ternal information relevant to the claim and those that ask for
characteristics or impressions derived from the text. The for-
mer includes items such as the characteristics of the claim’s



Figure 1: Our proposed method

issuer and whether there have been any official announce-
ments related to the claim. The latter includes whether the
claim makes statements about global trends or contains ag-
gressive bias against specific groups. The latter group of
questions pertains to human impressions and value judg-
ments derived from the text, which LLMs can likely repli-
cate sufficiently. On the other hand, the former questions
might be influenced by external factors. Examples of such
external factors include the context of the documents acces-
sible to the LLM and the structure of the websites where
the claims are found. Therefore, there may be differences in
the accuracy of LLM responses. The possible existence of
these two groups indicates that the questions in the struc-
tured checklist are not equally important to predict check-
worthiness of a claim.

Based on this idea, this paper proposes a data-oriented
CCWP model that leverages the answers to these questions
in the structured checklist by LLMs. Let C denotes a claim,
L denotes a set of questions in the structured checklist, and
aℓ = LLM(C, ℓ) denotes an answer to a question ℓ ∈ L
for C by an LLM. Then, the predictor f receives the set of
answers A = {aℓ | ℓ ∈ L} to C and predicts the check-
worthiness of C as defined in Equation 1.

Figure 2 shows the prompt used for obtaining answers
to questions in the structured checklist. {claim} and
{question} are placeholders for claim C and question
ℓ ∈ L. Following the precedent set by prior research us-
ing LLMs as annotators (Leng 2024), the response sections
are structured with tags. The sentences following “Claim:”
and “Question:” will be modified. For reviewing the claim,
it is necessary to answer the 52 questions created in prior
research (Sehat et al. 2024). Therefore, we will create 52
different prompts for each claim.

Read the following claim and evaluate the question pro-
vided. Return the answer as <answer>Yes, No, or Un-
known</answer>.
Claim: {claim}
Question: {question}

Figure 2: Prompt to LLM: {claim} and {question} are
placeholders for claim and question, and LLMs are asked to
answer the question in Yes, No, or Unknown with tags.

Experimental Evaluation
Task Settings
Dataset In the CCWP task field, other major datasets ex-
ist, including CLEF CheckThat! Lab 2019, 2021 (Elsayed
et al. 2019; Nakov et al. 2021), TATHYA (Patwari, Gold-
wasser, and Bagchi 2017), ClaimRank (Jaradat et al. 2018),
and PoliClaim (Gencheva et al. 2017b). These datasets are
primarily situated in the debate domain, where the task is
to assess the check-worthinessof individual sentences ex-
tracted from political debates. However, recent research has
pointed out that check-worthinessassessment in this domain
often lacks surrounding context, highlighting the need for
new methods to supplement missing contextual information.
Since the present study does not address the challenge of
contextual supplementation, we exclude all debate-domain
datasets except for ClaimBuster, which traditionally used
important data sets in comparative experiments.

Moreover, items from the structured checklist adopted in
this study are specifically designed to identify factors con-
tributing to check-worthiness. They do not target detecting
whether a sentence contains a verifiable claim. We exclude



the NewsClaims dataset (Gangi Reddy et al. 2022) in our
study, as it does not explicitly specify whether it is designed
for the CCWP task. It is also well known that the linguis-
tic distribution in training data can affect the performance of
LLMs. However, we do not address this issue, so all exper-
iments in this study are conducted using English-only data.
Accordingly, we also exclude IndianClaims (Jha et al. 2023)
from our evaluation.

On the other hand, NL4IF (Shaar et al. 2021) satisfies all
of the experimental conditions defined in our study and is
newly included despite not being referenced in prior work.
This dataset contains tweets related to COVID-19, annotated
across multiple fact-checking dimensions, including verifia-
bility, falsity, public interest, harmfulness, need for verifi-
cation, social impact, and government intervention. Among
these, we only utilize the subset of the dataset explicitly la-
beled for “need of verification” in this study.

Evaluation Metrics We employ standard classification
metrics to evaluate the performance of each method. Specif-
ically, we report macro-averaged Precision (P ), Recall
(R), and F1 score (F1-M ), as well as the micro-averaged F1

score (F1-µ). In addition, we include class-wise F1 scores,
denoted as F1class label name, to provide a more fine-
grained performance analysis. Among the reported metrics,
the best-performing scores for each evaluation criterion are
highlighted in bold.

Settings of Proposed Method
LLMs in the Proposed Method We adopted Llama 3
with a parameter size of 8B for the proposed method and the
follow-up experiments of previous studies. In our method,
the number of queries to LLM is enormous, at 52 times
per claim for which the check value is determined. For
this reason, it is not realistic to use paid APIs like GPT-
4 (Achiam et al. 2023) in situations where the proposed
method is actually used. For this reason, we adopted a rel-
atively lightweight model that can run locally. In order to
eliminate randomness as much as possible and obtain stable
answers in tasks related to fact-checking, the value of the
temperature parameter is set to 0.

Predictor Models in the Proposed Method
In this study, we used typical supervised machine learning
methods as a model that uses the structured checklist judg-
ment results by the LLM as the explanatory variable on the
CCWP task. We selected the following models to represent
a diverse set of learning paradigms.
Logistic Regression (LR) : This linear classification

method uses the logistic function to model the proba-
bility of categorical outcomes. It is appreciated for its
simplicity and ease of interpretation.

Decision Tree (DT) : This non-linear model divides data
using hierarchical, feature-based splits, providing a
highly interpretable and intuitive structure.

Random Forest (RF) : This method combines multiple de-
cision trees trained on different bootstrap samples, and by
aggregating their predictions, it achieves greater robust-
ness and mitigates overfitting.

Gradient Boosting (GB) : This ensemble method builds
weak learners sequentially to correct previous errors,
leading to high accuracy on structured data.

Neural Network (NN) : This layered model learns com-
plex, non-linear relationships by applying linear transfor-
mations followed by activation functions, making them
suitable for a wide range of prediction tasks.

Baseline As a comparison with the proposed method, a
previous study (Majer and Šnajder 2024) used a small num-
ber of LLM prompts to perform the CCWP task. We will
conduct a follow-up experiment. In the previous study, only
F1 score was used as an evaluation metric. In this study,
however, it is necessary to compare the performance of each
label in detail, so that we can conduct a follow-up exper-
iment. This is because the most important is the ability
to identify the assertion to be verified accurately, that is,
the labeled data of class CW. Since many datasets over-
lap, the same prompts as in the previous study will be used
in the follow-up experiment. Of the datasets not used in
the previous study, those that share the same prompts as
the CLEF CheckThat! Lab series will be used. In addi-
tion, for the NLP4IF dataset not used in the previous study,
these prompts will be used because it has the same do-
main and structure as the CLEF CheckThat! Lab series.
In order to ensure that the data is collected, we added a
prompt to the previous study to enclose the response in the
<answer></answer> tag.

In previous research, there were several categories with
different granularities of context included in the prompts.
Therefore, we adopted the prompts referred to as V2-type
as representative for the follow-up experiment. This is be-
cause it was reported that the V2-type prompts consistently
provided the best or second best performance across a wide
range of datasets.

Experimental Results and Discussion
The experimental results are presented in Table 3a. The
column labeled LLM corresponds to the baseline per-
formance obtained via few-shot prompting. Our pro-
posed method yielded substantial improvements in Acc
(accuracy), macro-averaged F1, and micro-averaged F1

across four of the six datasets, with the exception of CT21
and CT22. In the context of the CCWP task, these are used
as the primary evaluation metrics that collectively capture
overall classification performance. Notable improvements
include a 43-point gain in Acc, a 42-point gain in macro-
averaged F1 on the CB dataset, and a 42-point improvement
in micro-averaged F1 on the NLP4IF dataset.

On the other hand, when focusing solely on the CW la-
bel—which we place the most importance on—the F1 score
of the baseline (few-shot prompting) exceeded that of our
proposed method across all datasets.

The accuracy of our follow-up experiment using the CB
dataset was notably lower than that reported in the previous
study. This degradation is likely attributable to the additional
prompt instructions introduced during data preprocessing,
which required the model to enclose its output within spe-
cific tags(<answer></answer>). In LLMs with a rela-



Table 2: Overview of the datasets used in our experiments.
The column Label uses the abbreviations CFS (check-
worthy factual statement), UFS (unimportant factual state-
ment), NFS (non-factual statement), CW (check-worthy),
and NCW (not check-worthy).

Abbr. Dataset Domain Label

CB ClaimBuster debates
CFS
UFS
NFS

CT20
CLEF
CheckThat! Lab
2020 Task1

X(Twitter) CW
NCW

CT21
CLEF
CheckThat! Lab
2021 Task1A

X(Twitter) CW
NCW

CT22
CLEF
CheckThat! Lab
2022 Task1A

X(Twitter) CW
NCW

NLP4IF NLP4IF X(Twitter) CW
NCW

ENV Environmental
Claims reports CW

NCW

tively small number of parameters, such tag-based outputs
tended to be unstable. In datasets excluding CB, the la-
bels used in the prompting were binary (yes/no) and shared
across multiple tasks and question items. In contrast, the
CB dataset employed task-specific labels—CFS, UFS, and
NFS—which may have increased task complexity and con-
tributed to unstable model behavior.

As a new conclusion based on the above, one of the key
strengths of our proposed method is its robustness in re-
sponse generation. In few-shot prompting with LLMs, the
final output is highly sensitive to the quality and structure of
the prompt design. Our method, by comparison, allows for
stable extraction of feature values when the question items
and prompt format are fixed, and its performance remains
consistent even across different datasets and model types.
To support this observation, we conducted an additional ex-
periment involving five-fold cross-validation on the training
data, and the variances in accuracy and F1 scores in each
class label are summarized in Table 4.

Conclusion and Future Challenges
In this study, we proposed a novel method for Claim Check-
Worthiness Prediction (CCWP) using the structured check-
list to guide LLM-based feature extraction. Unlike few-shot
prompting baselines, which often suffer from unstable out-
puts and sensitivity to prompt design, our method provides
a more robust and interpretable approach by decompos-
ing complex judgments into modular components. Exper-
imental results across six datasets showed substantial im-
provements in core evaluation metrics—including accuracy,
macro-averaged F1, and micro-averaged F1 on four datasets,
while revealing limitations in predicting check-worthiness.

Table 3: Experimental results for CCWP models.

(a) CB

Metrics baseline LR DT RF GB NN

P 0.42 0.23 0.23 0.23 0.23 0.23
R 0.34 0.33 0.33 0.33 0.33 0.33
F1-µ 0.26 0.70 0.70 0.69 0.70 0.70
F1-M 0.15 0.27 0.27 0.27 0.27 0.27
F1-CFS 0.00 0.00 0.00 0.00 0.00 0.00
F1-UFS 0.40 0.00 0.00 0.00 0.00 0.00
F1-NFS 0.04 0.82 0.82 0.82 0.82 0.82

(b) CT20

Metrics baseline LR DT RF GB NN

P 0.73 0.58 0.58 0.60 0.60 0.57
R 0.69 0.55 0.57 0.59 0.57 0.56
F1-µ 0.65 0.59 0.59 0.61 0.61 0.59
F1-M 0.64 0.53 0.57 0.58 0.56 0.56
F1-CW 0.70 0.36 0.46 0.47 0.41 0.44
F1-NCW 0.59 0.70 0.67 0.70 0.71 0.67

(c) CT21

Metrics baseline LR DT RF GB NN

P 0.54 0.50 0.50 0.49 0.49 0.51
R 0.68 0.51 0.49 0.47 0.45 0.55
F1-µ 0.45 0.51 0.64 0.65 0.67 0.71
F1-M 0.37 0.51 0.43 0.43 0.43 0.48
F1-CW 0.16 0.51 0.09 0.08 0.06 0.12
F1-NCW 0.59 0.51 0.78 0.78 0.80 0.83

(d) CT22

Metrics baseline LR DT RF GB NN

P 0.63 0.66 0.59 0.59 0.62 0.58
R 0.65 0.52 0.53 0.52 0.53 0.54
F1-µ 0.49 0.78 0.77 0.77 0.77 0.75
F1-M 0.49 0.49 0.51 0.50 0.51 0.54
F1-CW 0.46 0.11 0.15 0.13 0.14 0.23
F1-NCW 0.52 0.87 0.86 0.87 0.87 0.85

(e) ENV

Metrics baseline LR DT RF GB NN

P 0.45 0.66 0.68 0.68 0.68 0.74
R 0.46 0.52 0.52 0.52 0.52 0.53
F1-µ 0.54 0.75 0.75 0.75 0.75 0.76
F1-M 0.36 0.48 0.47 0.47 0.47 0.50
F1-CW 0.52 0.11 0.08 0.08 0.08 0.14
F1-NCW 0.55 0.86 0.86 0.86 0.86 0.86

(f) NLP4IF

Metrics baseline LR DT RF GB NN

P 0.59 0.57 0.55 0.58 0.74 0.58
R 0.67 0.53 0.53 0.54 0.53 0.55
F1-µ 0.45 0.85 0.83 0.84 0.87 0.84
F1-M 0.43 0.53 0.53 0.54 0.53 0.55
F1-CW 0.32 0.15 0.16 0.17 0.13 0.20
F1-NCW 0.54 0.92 0.91 0.91 0.93 0.91



Table 4: Summary of performance metrics (m:mean and s:standard deviatio) across datasets. The additional experiments were
conducted to investigate whether the traditional models that were trained using the features of the proposed method could
produce stable results.

Dataset F1-µ F1-CW F1-NCW F1-NFS F1-UFS F1-CFS

m s m s m s m s m s m s

CB 0.71 0.00 0.83 0.00 0.00 0.00 0.02 0.03
CT20 0.64 0.02 0.83 0.00 0.00 0.00 0.02 0.00
CT21 0.66 0.04 0.35 0.01 0.88 0.00
CT22 0.79 0.01 0.10 0.00 0.94 0.00
ENV 0.76 0.00 0.10 0.00 0.93 0.00
NLP4IF 0.68 0.02 0.21 0.00 0.89 0.00

Additionally, we observed that our approach maintains sta-
ble performance even when applied to different models and
datasets.

These findings highlight two primary advantages of the
proposed method: improved cross-domain versatility and
greater output stability.

Determining whether a claim is worth fact-checking is not
a question that can be answered with a single word; rather, it
involves a complex judgment that requires consideration of
multiple factors. By decomposing this decision into a series
of more interpretable subtasks using the structured checklist,
and assessing check-worthiness based on their outcomes,
the method facilitates more reliable judgments at each stage.
This structured approach likely contributed to the overall ef-
fectiveness of the system.

Our method was effective in identifying not check-worthy
claims, but its performance was limited when detecting
check-worthy ones. This indicates that the criteria for de-
termining check-worthiness may be far more complex than
those based on checklist-style impressions. By refining
the current responses and developing a more sophisticated
framework, more accurate predictions may be achieved. Ul-
timately, this research aims to develop reliable computa-
tional tools for human fact-checking.
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